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so that, since our space is hypermetric,

n ﬂ,. n—1
521 & PiiZiZ; + 2 E,l pinZi < 0. (25)
Similarly,
T it - = —1,
thus -
mnoon =1
2;1 P2 piiZiZ; — 2 ; pinZi < 0. (26)
Addition of (25) and (26) yields
Z i piiziz; < 0. (27
i=1 j=1

If now x; , Xy ,..., x,, are rational numbers with sum 0, there exists an integer m
’S[L;fh that x; = z/m, 1 < i < n, where z,, 2, ,..., z, are integers with sum 0.
en

n n B 1 0
ﬂgl jgl PuiXs = W a';l :i';l PiiZiZ; g £ (28)

If x, seeey Xp ATC real numbers with sum O, the left-hand side of (28) is <0
by continuity. Hence our space is quasi hypermetric. ’
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How Good Is the Simplex Algorithm?
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1. INTRODUCTION

By constructing long “increasing” paths on appropriate convex polytopes,
we show that the simplex algorithm for linear programs (at least with its
most commenly used pivot rule, Dantzig [/]) isnota “good algorithm” in the
sense of Jack Edmonds. That is, the number of pivots or iterations that may be
required is not majorized by any polynomial function of the two parameters
that specify the size of the program. In particular, 2¢ — 1 iterations may be
required in solving a linear program whose feasible region, defined by d
linear inequality constraints in d nonnegative variables or by d linear equality
constraints in 2d nonnegative variables, is projectively equivalent to a
d-dimensional cube. Further, for each d there are positive constants oy and

Ba such that
agnlt?l < B(d,n) < Bm'#?1  forall n>d, (1)

where Z(d, n) is the maximum number of iterations required in solving
nondegenerate linear programs whose feasible regions are d-dimensional
polytopes with  facets. In fact, we show that for each d = 2,

(i - =(d, n) 2
a2 lim inf — =y < lim SUp — ey < 771 )

The sharpest lower bound previously established for & [8] asserted only
that
Ed,n) =z (@d—1)@n—d+1.

Thus result (1) begins to close the “large and embarrassing gap between

* This research was partially supported by the Office of Naval Research and the
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160 KLEE AND MINTY

what has been observed and what has been proved,” a gap which (in the
words of Gale [4]) “has stood as a challenge to workers in the field for
twenty years now and remains, in my opinion, the principal open question
in the theory of linear computation.” On the other hand, our results may not
be especially significant for the practical aspect of linear programming (see
the final section for comments on this point).

2. PRELIMINARIES

Qur constructions require some understanding of the geometric inter-
pretation of linear programming. Though the necessary information can be
found through Dantzig [2], Griinbaum [5], and Klee [8, 9], it is summarized
here as an aid to the reader.

A subset of a real vector space E is called a polytope provided that it is
the convex hull of a finite set of points or, equivalently, is the bounded
intersection of a finite number of closed half spaces. The faces of a polytope P
are P itself, the intersections of P with its various supporting hyperplanes,
and the empty set @. The zero- and the one-dimensional faces are called,
respectively, vertices and edges. Two polytopes are said to be combinatorially
equivalent provided that there exists a biunique correspondence between
the vertex set of one and the vertex set of the other such that vertices deter-
mining a face of either polytope correspond to vertices determining a face of
the other polytope.

A d-polytope is one that is d-dimensional, and the (d — 1)-dimensional
faces of a d-polytope are called its facets. A polytope is said to be of class
(d, n) provided that it is d-dimensional and has precisely n facets. Any
bounded subset of R?, the d-dimensional cartesian space, defined by » linear
inequality constraints in d real variables is a polytope of class (c, m) for some
¢ < d and m < n; of course, its class may be exactly (d, n). A d-polytope is
called simple provided that each of its vertices is incident to precisely d edges
or, equivalently, to precisely d facets. Any simple polytope of class (d, n) is
affinely equivalent to the feasible region of a nondegenerate linear program
involving n inequality constraints in  real variables, of one involvingn — d
inequality constraints in d nonnegative variables, and of one involvingn — d
equality constraints in n nonnegative variables. In fact, there are many such
programs of each sort, corresponding to various choices of the objective
function.

For any linear functional ¢ defined on the space E containing a simple
polytope P, a ¢-path on P is a sequence p, , p, ..., p; of vertices of P that are
successively adjacent (each of the segments [pgy, py] ,..., [Pi > 2] is an edge
of P) and such that

d(py) < d(p) < - < P(p)-
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The number / is the length of the path. The ¢-height of P is the maximum of
the lengths of the various ¢-paths on P, and the height n(P) is the maximum of
P’s ¢-height as ¢ ranges over all linear functionals on E. The simplex hefgkt
£(P) and the symmetric simplex height £,(P) are later similarly defined with
respect to certain special types of ¢-paths, so that n(P) = &(P) = E[(P).

To maximize ¢ on P by means of the simplex method, one starts with an
initial vertex p, of P and forms a ¢-path py, Py > P2 leading to a vertex p,
with ¢(p;) = max, ¢. In the crudest form of the simplex method, using a
pivot rule that permits moving from a vertex of P to any adjacent vertex that
provides a larger value of ¢, any ¢-path on P may appear as part of some
such maximizing ¢-path. Hence, n(P) iterations may be required in solving
a linear program whose feasible region is P. The number &(P) is similarly
related to the most common form of the simplex method [Z], in which each
pivot maximizes the gradient of ¢ in the space of nonbasic variables _[2,
Chapter 7; 8]. (This is discussed in more detail later.) The number £,(P)
is introduced for technical reasons.

In view of the above facts, it is natural to be interested in H(d, n) [respec-
tively, 2(d, n), E(d, n], defined as the maximum of 7(P) [respectively,
&(P), £,(P)] as P ranges over all simple polytopes of class (d, n). Note that

H(d, n) = E(d, n) = Zd, n).
Klee [7, 8] once proved E(d, n) = (d — 1) (n — d) + 1 for all n > d and
H(d,n) = Ed,n =d—1)(n—d)+1 when d < 3; (3)

and was so rash as to conjecture [8, p. 320, 9, p. 150] the equalities always
hold in (3). Half of that conjecture is demolished by (1). However, it still
seems plausible that H(d, n) = E(d, n), which is to say that the usual simplex
algorithm behaves, at its worst, at least as badly as any of its variants in which
each pivot improves the value of the objective function. (For practigal
purposes, the average behavior of the algorithm is more important than its
worst possible behavior. See the final section for additional comments.)

3. STATEMENT OF MAIN RESULTS
The inequalities stated in the Introduction follow from our main results,
which are the inequalities

Hd+ 1,n+2) = 2Hd,n) + 1, )
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and the same inequalities with = in place of /. These are first proved for H,
in order to display the simple geometric ideas that are involved, and then
the modifications required for .=, are indicated.

4, PrRoOOF THAT H(d + 1, n +2) = 2H(d, n) + 1

If K is a polytope of class (¢, m) and P is a polytope of class (d, n), then
K x P is a polytope of class (¢ + d,m +#n). For 0=t = c + d, the
t-faces of K x P are precisely the sets of the form

(r — face of K) x (s — face of P)

for r + s = t. It follows that K x P is simple if K and P are, and that
[0,1] x Pis a polytepe of class (4 4 1, n + 2).

Now let £ be the vector space containing P, let ¢ be a linear functional
on Esuch that the ¢-height of P 1s n(P), and let py, py ,..., p ) be a ¢-path
of length n(P) on P. Necessarily, ¢(po) = minp ¢ and ¢(P,p) = max, 4.
in the space R x E, let O be the polytope whose vertices are the points
p' = ((p), p) and p? = (o — ¢(p), p), where o is fixed with o > 2 max, ¢
and where p ranges over all vertices of P. For each (x, x)e R X E, let
(o, X) = o Then

1 1 1 1 2 2 2
Pos Prosees Pypy—1 2 Puipy 2 Prgpy—1 29 P10 Py

is a ¢-path of fength 2%(P) 4 1. As Q is combinatorially (and even projec-
tively) equivalent to the polytope [0,1] x P, inequality (4) foliows.

Plainly H(2,n) =n — 1. An immediate consequence of (4) is that
H(3,n) = 2n — 5. But then H(3, n) = 2n — 5, for it follows from Euler’s
theorem that any simple polytope of class (3, 1) has precisely 2n — 4 vertices.

For easy visualization of the above construction, suppose that ¢(p,) = 0,
S pury) =< 4, and ¢ = 1. Then Q is obtained from the prism [0,1] x P by
tilting the left base {0} x P in one way and the right base {I} X P in the
opposite way. (The “tilting” is not effected by rigid motions, but by affine
transformations which do not change the E-coordinates of points of R x E.)
This is shown in Fig. 1 for the case d = 1. The following section describes
a similar construction in which R and [0,1] are replaced by R? and a convex
polygon.

In the simplest instance, starting with a segment for P, iteration of the above
construction leads to a d-polytope which is combinatorially (and even
projectively) equivalent to a d-dimensional cube and whose height is 29 — 1,
Hence H(d, 2d) z= 2% — 1. Further, the polytope in question can be made as
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0 i
Fic. 1. Construction of a polytope for the case d = 1.

close as desired to the cube [0, 1]1%. To make this explicit, choose € € 10, [ and
consider the problem
max X,

subject to the constraints

x1>0,
L
x220—|—€x1,
xgél—fxu
X320+€x23
xg <1 —exy,
X3 =0+ exqy,
xdél—'ﬂd»l-

(For notational convenience, we here maximize the last coordinate rather

than the first as in Fig. 1.) o
For d — 2, an x,-path involving all 2¢ vertices is given by

(0, 0),
(1, ),
(13 1 — G),
0, 1).
Ford=3
(0,0, 0),
(1, ¢ €,
(11—, 81 — e)),
0,1, €),
[ Y
(1,1 — e 1 — (1 — &),
(1,e,1 — €,
(0,0, 1).
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For d = k, the first ¥ — 1 columns of the table are formed by writing down
the table for ¢ = k — 1 and then repeating it in reverse order. The entries
in the last column are obtained in the upper half of the table by multiplying
the entries in the (k — 1)th column by €, and in the lower half of the table
by subtracting e times the (4 — 1)th column entries from 1. In each case, the
last column entries are strictly increasing from 0 to 1.

5. PROOF THAT H(d +2.n+k + 1) ZkH(d, n) +k — 1

Let R™? denote the (d + 2)-dimensional cartesian space, R* the subspace
of R%12 consisting of all points whose last d coordinates are all 0, and R?
the subspace of R**? consisting of all points whose first two coordinates are
both 0. For each point x of R*2 let «(x) denote the first coordinate of
x and w(x) the last one.

Let V, be a convex polygon in R* whose k vertices 0 = vy, v, ,..., U3 form
an a-path with

1 = a(vs) <7 afvg) <7 -+ < (). (6)
Choose & so that
0=z 38 <= min{l, a(vy), a(vg) — a(0s),..0, a(0y) — ¥vr1)], )
let
vy = Oty , Vir1 = O, (8)
and set
V = con{vy , Ussv.y Ui s Ugaa}s (9

where “con’ denotes the convex hull. An additional restriction is placed on
6 later.

Let P be a simple polytope of class (4, n) in R? admitting an w-path
0, py ..., py of length [ = H(d, n). In particular, O is a vertex of P and

0= mgn @ < max o = w( py). (10)
We assume without loss of generality that

w(p) = 1. (11)
With
0* =V + P, (12)

O%* is a simple polytope of class (d —- 2, n -k 4+ 1),and for | =i ="k 1
the polytope v; + Pis a d-face of O*. We are going to construct a polytope Q,
combinatorially equivalent to O, such that the w-height of @ is at least
kl + k — 1. Tt is obtained from Q¥ by tilting the d-faces v; 4+ P in various
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ways and then forming the convex hull of the union of the tilted versions.
The tilting of v, + P is effected by means of an affine transformation which
Jeaves the point v; invariant, affects only the first two coordinates of any point,
and increases [respectively, decreases] the first coordinates of the points of
{v; + p: p € P with w(p) > O} when i is odd [respectively, even]. As a first step
toward understanding the construction, the reader should attempt with the
aid of Fig. 2 to visualize the case in whichd = 1,n = 2, and P is the segment

(0, 0, 0), (0, 0, )].

| |
| |

| |

|
4
/
| 2
/

L |
w5/ |
B/ |

| [

i |

| |

| |

3 18

Fic. 2. Construction of a polytope for the case in which d = 1, n = 2, and P is the
segment [(0, 0, 0), (0, 0, 1)].

The tilting of the faces v; + P is described in terms of a convex polygon
W= COH{Wl s Wa 5eees Wi s wk+1}s (13)

where w, is close to v; for 1 < i << k + 1. Specifically,

wy = 260, , wy = (1 — 8)v,, (14)
the points w; ,..., Wy, are chosen in that order so that
a(wy) = av) — (=D (A <i<k) (15)
and
[We,w;] is parallel to [v;, 0] (1<i<k), (16)

and the point wy,, is then chosen so that

[We , Wya] is parallel to vy, k1l

and (17)

[Wisay » w1] is parallel to  [vg , 01l
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These choices are all illustrated in Fig. 2. They imply that each w;, is a vertex
of W, but of course W need not be contained in V.

When c_f;s 1 anq P is the segment [(0, 0, 0), (0, 0, 1)], the desired polytope Q
has as its vertices the points »; and the points z;, = w; -+ (0,0, 1)
1 == i == k + 1. The simple polytope Q is of class (3, & - 3) and the sequence
D1, 21525, Vg5 U s 255 Zg 5o (ending with z, , v, for even k and with v, , z;
for odd k) is an «-path of length 2k — 1 on Q.

Let us now consider the general case, and recall that wP = [0, 1]. For each
peP,andforl <<i=Fk-+ 1, let

Pt = (1 — w(p)lv; + w(p)w; € R?, (18)
whence 0f = v; and p;* = w; . The “tilted version” of v; + P is the d-poly-
tope

T,={p'+p:pehP} (19)
and the desired (d + 2)-polytope is the convex hull

k+1

Q = con L1) T;. (20)

We claim that @ is a simple polytope of class (d+42, n+k-1) and the
sequence

U1, Pt Drsens Pt Pis PEF Disen DDy Uy Ua, PR Py,
wa BB+ By P Prses YT Dy Vay Vg 21)
(ending.with i+ py sy P8 -+ po s vy for even k and with v, , p,*,..., p;* for
Ot:'ld k)‘ls an wo-path of length K/ + &k — 1 on Q. Plainly Q has the claimed
dimension, and as, by (18) and (15),
alpi + p;) = (1 = fb‘(Pf)) a(;) + w(py) w;) = avy) — (—1)8w(py),

Et follm;vs from (6)—(8), (10), (11), (14), and (15) that the function « is strictly
increasing for the sequence (21). It remains to show that successive members
of (21) are joined by edges of O, that Q has precisely n + k + 1 facets, and
that Q is simple. This will all follow from an identification of Q’s facets.
With Q* as in (12), O* has s facets of the form
V4+F=con |J (v;+F), F afacetof P, (22)

1=i=ktl
and k - 1 facets of the form

E+ P —con((v; + P)V (v; + P)), E = [v;,v;] an edge of V. (23)
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We are going to show that the facets of Q are simply perturbed versions of
those of Q*. This will be accomplished with the aid of the following result,

where the roles of X and Y are played by O* and Q, respectively.

LemMa. Let X and Y be polytopes having the same number m of vertices,
the vertices of X being x; ,..., X,, and those of Y being yy s..., Ym - Suppose that
for each index set IC{L,..., mi,

con{x;: i€ l} isafacetof X = con{y; i€ I} isafacetof Y.

Then the reverse implications hold, whence X and Y are combinatorially
equivalent.

Proof. For any set IC{l,.., m), let X;=con{x;:iel} and
Y, = con{y;: i € I}. The set I will be called an X-facet [respectively, X-face)
provided that X/ is a facet [respectively, face] of X. The Y-facets and Y-faces
are similarly defined. The lemma’s hypothesis is that every X-facet is a
Y-facet, and we want to prove that every Y-facet is an X-facet. As the faces
of a polytope are precisely those sets expressible as intersections of its facets,
we know every X-face is a Y-face.

The lemma, which is obvious when X is two-dimensional, will be proved
by induction on the dimension dim X. Suppose it is known when dim
X = d — 1, consider a pair X, Y as described with dim X = d, and suppose
there exists a Y-facet J which is not an X-facet. We will show that this contra-
dicts the inductive hypothesis.

Choose an X-facet I. As Y, and Y; are both facets of ¥, there is a sequence

10) = I, I(1),..., I(s) = J

of Y-facets such that for | < r < s the set I(r — 1) NI(r) is a Y-face
with
dim Yip—p) n sy = (dim ¥) — 2.

It then follows that I(r — 1) and I(r) are the only Y-facets containing
I(r — 1) N I(r). Let r, be the least r for which I(r) is not an X-facet. Then the
set I(ry — 1) N I(ry), though a Y-face, is not an X-face. For if it were, it
would be an intersection of certain X-facets, and each of those X-facets
would be a Y-facet. But the only Y-facets containing I(r, — 1) N I(ry) are
I(r, — 1) and I(r,), and the latter is not an X-facet. We now have a contra-
diction of the inductive hypothesis as applied to the (d — I)-polytopes
Xitry-1) and Yy, 1), as every facet of Xy 1 corresponds to a facet of
Yitr-1) but not conversely. This completes the proof of the Lemma.
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Now note that the vertices of Q* are precisely the points of the form
v; - p, for 1 <<i <"k 4+ 1 and p a vertex of P, and that the number

max{lp —vl: 1 <i<k+1, peP}

can be made arbitrarily small by choosing 8 small enough. Tt then follows
easily from (19) and (20) that, for all sufficiently small §, the vertices of Q are
precisely the points of the form p? + p,for | <i < k 4 1and p a vertexof P.
This provides a natural correspondence between the vertices of O* and those
of Q. In describing the correspondence between the facets of 0* and those
of O, it will be convenient for each x € R%* to define x’ and x” by

x =x" 4+ x", x'eR:, x"eRd, (24)

Now consider a facet of Q* of the form V + F, as in (22). Let 8 be a
constant and o a linear functional on R? such that maxpo = f and
F = {peP: o(p) = B}. Extend o to a linear functional g on R by setting
pw(x) = o(x”) for all x € R*2, Then the sets

e Q* g =B =V~+F
=confo; +fil<i<k+1, f avertexof F}

and
{geQ:pulg) =Bt =con{p'+ i1 <i<k+1, [ avertexof F}

are facets of Q* and Q, respectively.

Finally, consider a facet of Q* of the form E -+ P as in (23), where E is
an edge [v,, v;] of V. Let B be a constant and o a linear functional on R?
such that maxy o =B and [v;,v;] = {ve V: o(v) = B}. As the edges of
W are parallel to corresponding edges of V, there is a constant y such that
maxy o =y and [w;,w;] ={we W:0(w) =%}. Extend o to a linear
functional u on R%+2 by setting (x) = o(x’) for all x € R%+2, and to another
such functional ¢ by setting

P(x) = o(x) 4 (B — ) w(x). (25)
Then the sets
{g*cQ*p@®) =B =E+ P
=confv, +-pirefi,j}, p avertex of P}

26
and 20

{aeQ:4(q) = B} = con{p” +p:re{i,j}, p avertex of P}
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are facets of @* and Q, respectively. To check the equality in (26), use (25),
(24), and (18) to see that

J(p" + p) = o(p”) + (B — 7) w(p)
= (1 — &(p) o) + w(p) (B — ¥ + o(w)),

whence (for arbitrary pe P) (p” + p) = B if and only if re{i, }.

Reviewing the facts established since the Lemma was proved, we see from
the Lemma that the natural correspondence between the vertices of Q* and
those of Q generates a combinatorial equivalence. Hence Q has all the desired
properties and the proof that H(d | 2,n+ k + 1) = kH(d, n) + k —11is
complete.

6. PROOF THAT agnl®2l = H(d, n) < Bnl4/2
In order to establish the existence of positive constants x4 and S, such that

the stated inequality holds for all n = d = 2, we prove the following more
explicit result:

(27

ww @ oy H(d,n) _ 2
— < lim inf = lim sup < ——.
21[4/21%) ik il now . plaf2] [d2)!

As will be apparent in the argument below, the upper and lower bounds
can be improved by treating separately the cases of odd d and even d. '
Let u(d, n) denote the maximum number of vertices of polytopes of class

(d, n). It is known (Gale [3], Griinbaum [5]) that

[ -
wd, 5) > + (28)

n—d n—d

for all n > d, and (Klee [6], Griinbaum [5]) that equality holds for
n > [d/2]2." Plainly H(d, n) < p(d, n). Thus for d fixed and »n = [d/2]%, the
function H(d, n) is majorized by a polynomial of degree [d/2] in n [given
by (28)] with leading coefficient 1/([d/2]!) when d is even and 2/([d/2]!) when
d is odd. That justifies the right-hand inequality of (27).

The left-hand inequality of (27) is obvious for d = 3, as H(2,n) = n — 1

1 Note added in proof: Equality for all n = d has been proved by Mc Mullen [/4].
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and H(3,n) = 2n — 5. Now suppose the left-hand inequality of (27) holds
for a certain value of d = 3, and note that

L Hd+2,2m+ 1) _ . . H(d+2,2m)
lim inf =7 = = WL =5 vz

. (m—1)H(d,m)+m—2
= hﬁ.glf (2m) 2021 mld /2

~ -([d/2)+d/21h) = Q-[d+2)/2P)

where the second inequality follows from the result of the preceding section
and the fourth inequality follows from the inductive hypothesis. The proof
is thus completed by mathematical induction.

7. REPLACEMENT OF H BY =, IN THE INEQUALITIES OF PREVIOUS SECTIONS

As we have seen, H(d, n) is the maximum number of pivots that may be
encountered, using a very crude pivot rule, in applying the simplex method
to nondegenerate linear programs with bounded feasible region of class
(d, n).2 In practice, however, more refined pivot rules are usually employed.
Some of them are discussed by Kuhn and Quandt [/0] and Dantzig [2,
Chapter 11]. The most commonly used pivot rule is due to Dantzig [1, 2,
Chapter 7], and we want to adapt our earlier construction to apply to it.
This will require some preliminary explanation.

In Dantzig's “standard form™ [2, pp. 86-88, 100-101], a linear program-
ming problem has its feasible region in R defined by the nonnegativity
constraints x; = 0 (j = 1,..., ), in conjunction with a system of m linear
equality constraints,

ap Xy + Xy + o b dpXn = by,

A Xy + AopXy + - BaaXy = by,

Ay Xy -+ AaXe + + QX = Biiis
and it requires the maximization of a linear functional

Xy + CoXy + 0 A CaXn = 2(X)

* Note added in proof: That the behavior of H(d, n) is “exponentially bad” has also
been established by Jack Edmonds, by means of an example associated with an algorithm
for finding shortest paths.
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over that region. (We maximize rather than minimize, as the former led to
more natural notation in the constructions of the preceding sections.) If
the problem is nondegenerate and its feasible region P is bounded, then
m < n and P is a simple polytope of class (n — m, r) with n —m << r = n.
Dantzig’s pivot rule calls, at each stage, for “bringing the most positive
column into the basis.”” In connection with our geometric approach to
the construction of examples involving a large number of pivots, we require
a coordinate-free description of Dantzig’s pivot rule. This is taken from
Klee [8].

Let X be a flat in a real vector space and let P be a simple d-polytope in X.
By a variable for the pair (P, X), we mean an affine functional £ on X such
that £ is not constant on P. For any such £, the sets H(£) = {x € X: £(x) = 0}
and J(£) = {xe X: £(x) = 0} are, respectively, the hyperplane and the
half space associated with £. Consider the problem of maximizing a variable ¢,
on P. Let # denote the set of all facets of P, and for each Fe # let ¢; be
a variable such that FC H(¢z) and P C J(¢y). Let @ = {¢;: F e F}, whence
P is the intersection of the set (Vyeq J(¢) with the smallest flat containing P.
Our discussion is henceforth relative to the system (P, @, ¢,). For a linear
programming problem in standard form, as described in the preceding
paragraph, X would be the flat in R* defined by the equality constraints,
P would be the intersection of X with the nonnegative orthant of R*, @ would
be the set of restrictions to X of those coordinate functionals whose vanishing
determines a facet of P, and ¢, would be the restriction to X of the objective
function z.

If p is a vertex of the simple d-polytope P, a variable ¢ € @ is said to be
basic or nonbasic for p according as $(p) = 0 or ¢(p) = 0; the set of all
nonbasic variables is denoted by @, . Each set @, is of cardinality 4, and
two vertices p and p’ of P are adjacent if and only if there is exactly one
variable ¢?? in @, ~ @, . The nonbasic (p, p’) gradient of ¢, is then
defined as the quotient

($o(2)) — oD 7 (P) — b "7 () = ($ul(P)) — b 2)N(S7 7' (D),
representing the amount of improvement in ¢, achieved per unit increase
in 77 by moving from p along the edge [p, p']. The nonbasic (p, 7))
gradient of ¢, is equal to the coefficient y(¢* *), where

ﬁf’u = Yo+ Z }’(‘?S)Sb

GED,

is the unique expression in that form (the 4's being constants) for the restric-
tion of ¢, to P. A ¢,-path p, ,..., p; is called a simplex path for the system
(P, @, ¢,) provided that

Y717 = max (P for 1 =< i<]
Y
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the maximum being over all vertices ¢ of P adjacent to p,_, . Thus, a simplex
path is one which at each stage maximizes the nonbasic gradient. If the
maximum is strict at each stage—that is, if y($"i- #) = y($?i1 9) for all
vertices ¢ of P that are adjacent to p,, and different from p,—the simplex
path is said to be unambiguous. A symmetric simplex path for (P, @, ¢,) is a
do-path py ..., p; such that p, ..., p; is an unambiguous simplex path for
(P, D, ¢,), and py ,..., po is an unambiguous simplex path for (P, @, — ).

The simplex height &(P) [respectively, symmetric simplex height §(P)]
of any simple polytope P is the maximum length of simplex paths [respectively,
symmetric simplex paths] in systems of the form (P, @, ¢,). Finally, Z(d, n)
[respectively, E(d, n)] is defined as the maximum of &(P) [respectively,
£(P)] as P ranges over all simple polytopes of class (d, n). Plainly
Z(d, n) = E(d, n). It follows from the discussion by Klee [&] that Z(d, n)
is the maximum number of iterations required, using Dantzig’s pivot rule,
in solving nondegenerate linear programs with bounded feasible region of
class (d, n).

It is now a routine, though tedious, matter to verify that the inequalities
previously established for the function H are valid for the function =, as well.
The technique is similar, in some respects, to that of Klee [§]. We show by
way of illustration that

Efd+ 1,n+2) =258(dn)+ 1, (29)

presenting the proof of (29) in such a way that the reader will (we hope)
see how the same ideas can be used to show

Ed+2,n+k+1)=kEdn+k—1 (30)

Let R denote, as usual, the (4 -+ 1)-dimensional cartesian space, R!
the subspace of R%! consisting of all points whose last ¢ coordinates are all 0,
and R? the subspace of R*!1 consisting of all points whose first coordinate
is 0. For each point x of R¥ let «(x) denote the first coordinate and e(x)
the last coordinate of x, and let the points x" and x” be such that

x=x"+x" xeR, x"eR4

Let & and & denote, respectively, the restriction of « to R! and of @ to R4
Let / — 5. (d, ). Then R* admits a set @ of » affine functionals such that
the following conditions are satisfied:

(a) the intersection P — (Vo /(&) is a simple polytope of class (d, n);
(b) @ does not have the same value at any two vertices of P (convenient,
though not essential);
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(c) the system (P, @, @) admits a symmetric simplex path 0 = py,..., Py
with
0=mine = a(p,) < = < a(p) = m‘gxd; = 1.
2
Let V¥ denote the segment {x € R': 0 < &(x) < 1}, choose 3 € 10, {[, and for
each p € P let

pt = (8a(p).p), P> = (1 — da(p). p).
Let O denote the convex hull
Q = con({p: pe Py {p*: pc P)).

Then O, being combinatorially equivalent to V' —+ P, is a simple polytope of
class (d - 1, n + 2). The path

pﬂlaplls'"! pilapbzs""s pl‘Z’ pﬂz (31)

is an a-path of length 2/ 4 1 on Q and we want to show that for a suitable
set ¥ of affine functionals on R%! it is a symmetric simplex path for the

system (Q, ¥, o).
For each 7 > 0 let A, = {7&,  — ra}, a pair of affine functionals on R

For each such r,
N JQ) =V, (32)

(=¥

and by choosing = large enough we may be sure that

the maximum of the absolute value of the nonbasic (v, v') gradient of &

for the system (V, A, ,a) is less than & times the minimum of the
absolute value of the nonbasic (p, p') gradient of & for the system

(P, @ &), where (v, v') [respectively, (p, p')] ranges over all ordered
pairs of adjacent vertices of V [respectively, P]. (33)

Having chosen  for which (33) holds, we then set
Y —@*ru (34)

where @# consists of the functionals ¢* given by ¢*(x) = ¢(x") (for all
x € R, e P), and A 7 consists of the two functionals 7o* and 7 — Ta®,

o being given by
a#(x) = &(x') — 8a(x"),  xeRUL (35)

Then Q = (Vyew J(f) and with the aid of (33) it can be verified that the
path (31) is a symmetric simplex path for the system (0, ¥, ). This completes
the proof of (29).
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In the argument just completed, the purpose of (33) was to ensure that,
whenever a move is made along an edge of Q so as to maximize the nonbasic
gradient of « for the system (Q, ¥, «), the edge in question will correspond
(under the natural combinatorial equivalence between Q and V' + P) to an
edge of P rather than to an edge of ¥, provided that any improvement in «
can be achieved at that stage by traveling along an edge of Q that corresponds
to one of P.

The inequality (30) is established by combining the ideas of the above
construction with those used earlier in proving (5). With ¥ as in the earlier
section (a convex polygon rather than a segment) and P as above, Q is
defined by means of (20) and A, is chosen subject to (32) and (33). Comparing
the roles of (25) and (35), one is led to the proper analog of (34) and the
proof of (30) is completed. The details are omitted because they are tedious
and not particularly instructive.

8. FINAL COMMENTS

We have discussed Dantzig’s pivot rule explicitly because it is the one most
commonly used in practice. However, our methods could probably be used
to exhibit the same bad behavior for many other pivot rules. Indeed, we do
not believe there exists a pivot rule that turns the simplex method into a
“good algorithm”™ in the sense of Edmonds, though the rule calling at each
stage for greatest possible improvement (rather than gradient) of the objective
function would seem to merit further study (see Dantzig’s comments on this
[2, p. 240]).%

We have of course been discussing the worst rather than the average
behavior of the simplex algorithm, and it should be emphasized that the
number of iterations required in our examples is much greater than the
number usually encountered in practice ([2, p. 160]) or even in formal experi-
mental studies of the simplex method (Kuhn and Quandt [/0]). Inequality (5)
led to (1) and (2), which are rather satisfactory from a theoretical viewpoint.
However, so far as linear programs of common size are concerned, it is
most instructive to compare our inequality,

with Dantzig’s summary [2, p. 160] of “‘empirical experience with thousands
of practical programs.” In a statement applying to nondegenerate linear
programs with feasible regions, defined by m linear equality constraints in
n nonnegative variables, he reports that “the number of iterations may run
anywhere from m as a minimum, to 2m and rarely to 3m. The number is

3 Note added in proof: This rule has recently been studied by Jeroslow [13], with results
similar to those obtained here for Dantzig’s pivot rule.
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usually less than 3m/2 when there are less than 50 equations and 200 variables
(to judge from informal empirical observations).” For a nondegenerate prob-
lem with m = 40 and n = 80, the feasible region could be of class (40, 80)
and our F(40, 80) = 2% — 1 is to be compared with Dantzig’s 3m = 120.
Any mathematical explanation of this contrast must be in the realm of

geometric probability, and the results of Rényi and Sulanke [//] and Schmidt

[/2] may be relevant.

Dantzig [2, p. 160] also reports: “Some believe that for a randomly
chosen problem with fixed s, the number of iterations grows in proportion
to n.” As interpreted in terms of worst rather than average behavior, this
would imply that for each m there is a constant y(m) such that

S(n — m, n) = y(m)n forall n =m - 1.
We do not know of any results contradicting this. However, it follows from
(36) that no such function y(m) is majorized by any polynomial in m.
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